
Artificial Neural Network Simulation on CUDA

John Pendlebury, Huanhuan Xiong, Ray Walshe
CloudCore Research Group

School of Computing, Dublin City University
Dublin, Ireland

jpendlebury@computing.dcu.ie

Abstract—The advent of low cost GPU hardware and user
friendly parallel programming APIs, such as NVIDIA CUDA
means that affordable, programmable, high-performance com-
puting environments for simulation are now attainable for
development of scientific simulations. In this paper the authors
present the MineHunter program, a parallel simulation of
neural networks on NVIDIA CUDA. The simulation consists
of 128 mine hunters in a mine field of 8192 mines, running on
an Intel QuadCore i5-2500 3.3GHz 2 x Nvidia GeForce GTX
480. The results presented demonstrate that CUDA improves
performance by up to 80% compared with the equivalent CPU
implementation.

Keywords-GPU;CUDA;Simulation;Neural-Networks;

I. INTRODUCTION

It was not at all long ago that developers wishing to take
advantage of high-performance computing required access
hours on dedicated super computer architectures for high
performance computing. With the advent of easy to use,
low learning curve GPU APIs such as CUDA (Compute
Unified Device Architecture) from NVIDIA the age of high
performance computing for the masses has arrived.

Neural Networks are a good example of where parallel
computing can be utilised very effectively, as they are
composed of many independent interconnected processing
units and are inherently parallel in nature.

Moreover CUDA has some characertistics that make it
very suitable for implementing neural network simulations.
CUDA is capable of running thousands of inexpensive
threads concurrently. CUDA capable devices typically have
thousands of dedicated specialised processing units such as
ALUs (Arithmetic Logic Units) capable of rapid mathe-
matical calculation. This allows the parallel simulation of
potentially hundreds of thousands of artificial neurons within
light weight threads on a GPU.

While there are many examples of complex problem
solving with neural networks using CUDA [1] [2] [3] et
al., there are few, if any, examples of simple neural network
implementations suitable for entry-level discussion in this
field. The goal of this paper is to present a GPU based
solution for a relatively large scale simulation of simplistic
neural network based agents, as a first step to creating large-
scale, parallel neural network based multi agents systems.

The outline of this paper is as follows. Section II describes
several examples of related work about neural network
simulation in hardware platforms, including CPU and GPU
environments. Section III presents several simulation pro-
grams and parallel algorithm implementations for neural
network simulation on CUDA and CPU. The comparitive
results of these algorithms are presented in Section IV and
the conclusions detailed in Section V.

II. RELATED WORK

Many previous researches focus on accelerating ANN (Ar-
tificial Neural Network) simulations by mapping them into
paralleling computing, or on dedicated hardware architec-
ture, including clusters, supercomputers or high-performance
processors. Some of the earliest work used hyper-cubic
parallel computers to model ANNs [4].

Niebur and Brettle (1993) [5] use a hypercube architecture
to simulate biological neural networks on massively parallel
supercomputers. They develop a simulator that is used to
simulate the neural networks of 16,384 neurons coupled by
about 1000 synapses per neuron, and estimate the perfor-
mance for the simulator.

Pleaser et al. (2007) [6] develop an efficient parallel
simulation of large-scale neuronal networks on the clusters
of multiprocessor computers. The result demonstrates that
hybrid approach to neural network simulation, which com-
bines multi-threading and distributed computing, achieves an
even better performance than a purely distributed simulation.

Jin et al. (2008) [7] build an efficient model of spiking
neural networks on a scalable multiprocessor. The result
shows that the system is capable of simulation large-scale
neural networks at 1ms resolution efficiently, which provides
some generic ideas for design of hardware platforms for
computational neural networks.

Even though the performance and power efficiency of
these dedicated hardware approaches (mainly CPU-clusters)
is much superior to other techniques, the dedicated hardware
approach suffers from limited programmability and high-
cost [8]. GPUs provides a more powerful and cheaper com-
putational platform for the acceleration of parallel computing
for diverse applications.

Oh and Jung (2004) [9] utilize the parallelism of GPU
by accumulating numerous input and weight values, and



converting multiple inner-product operations to one matrix
operation. And in this way, they utilize the vertex and
pixel shaders in a GPU to implement matrix operations.
Finally, they get a 20-fold performance enhancement using
an ATI RADEON 9700 PRO board compared to CPU-only
processing.

Daniel et al. (2008) [1] believe that CUDA implemen-
tations can be well suited for neural networks applications.
They build the implementation based on three computational
kernels: matrix operations, random number generators and
sigmoid functions. And they find the GPU implementation
has a speed-up of 66-fold over an optimized C++ program
running on a 2.83GHz Intel processor.

Guzhva et al. (2009) [2] implement standard back-
propagation algorithm for training multiple perceptrons si-
multaneously on NVIDIA CUDA. They compare the GPU-
based implementation to a highly optimized CPU-based
computer program, and find that the former has up to 50x
speed increase than the latter.

Nageswaran et al. (2009) [3] represent strategies for
mapping of large-scale spiking neural networks simulation
models on GPU. They find that the CUDA GPU implemen-
tation is up to 24 times faster than a CPU version.

III. SIMULATION

In order to generate the results for this research paper
a simulation was created called MineHunters. The purpose
of the MineHunters simulation is to emulate the activity of
landmine hunting robots detecting landmines in a minefield.
In the first part of our research we prototyped the simulation
in Java.

A. JMineHunter

The first step in the creation of the simulation was the de-
velopment of a simple Java application called JMineHunters.
Fig. 1 shows a screen shot of the JMineHunter application.
The application consisted of a small 2-dimensional grid
ranging from -100 to +100 along the x-axis and the y-axis.
A number of mines were randomly placed on this grid. The
mines are represented in red in Fig. 1. Mine hunters were
also randomly placed on the grid, represented in green in
Fig. 1.

Each MineHunter was attributed with a simple artificial
neural network consisting of only two neurons. Neural
networks are very versatile and have been utilised in areas
as diverse as face detection [10] and bankruptcy prediction
[11]. As noted in [12] the workhorse of neural networks is
the standard feedforward three-layer model. It is certainly
true to say that the more complex the problem, the more
complex the neural network required to solve it will be. That
does not detract from the fact that simple neural networks
can have useful applications.

Fig. 2 illustrates the configuration of the neural network
encapsulated in each mine hunter. Each neural network

Figure 1. Screenshot of the prototype JMineHunter application.

has four inputs. As shown in Table I the inputs take the
coordinates of the mine hunter and the mine.

Figure 2. Configuration of neural network for each MineHunter.

Input Value
I1 The x-coordinate of the mine hunter
I2 The y-coordinate of the mine hunter
I3 The x-coordinate of the mine
I4 The y-coordinate of the mine

Table I
INPUT VALUES FOR EACH NEURAL NETWORK.

Table II displays the weights applied to each input by each
neuron. The input to the first neuron is:

X1 = W1 ∗ I1 +W2 ∗ I2 +W3 ∗ I3 +W4 ∗ I4 (1)

The input to the second neuron is:

X2 = W5 ∗ I1 +W6 ∗ I2 +W7 ∗ I3 +W8 ∗ I4 (2)



Obviously multiplications involving zero are redundant
and are not performed.

Weight Value
W1 -1
W2 0
W3 1
W4 0
W5 0
W6 -1
W7 0
W8 1

Table II
WEIGHT VALUES FOR EACH NEURAL NETWORK.

The output from each neuron is calculated as O1 =
f(X1) and O2 = f(X2) respectively, where f(x) is the
activation function used. The activation function for each
neuron is a modified sigmoid function of the form:

f(x) = 2 ∗ (1/(1 + e−0.1∗x)− 0.5) (3)

Fig. 3 shows the resulting output from this function. The
limits for this 2-dimensional world are +/- 100.

−100 −50 0 50 100

−1

−0.5

0

0.5

1

Figure 3. Output from the activation function used.

The consequence of this is that O1 and O2 can be used as
the x and y components of a direction vector for the mine
hunter. When continually added to a mine hunter’s position
this will result in the mine hunters’s position intercepting
that of the mine to which it s targeted.

Algorithm 1 outlines the basic operation of the JMine-
Hunter application.

B. Porting JMineHunter to C

The next step in this project was to port the logic presented
in Algorithm 1 to the C programming language. As the new
C program did not require a graphical output this step was
trivial. The only logical changes made were the number of
mines, which were increased from 6 to 8192, and the number

Data: Uninitialised Map
Result: Solved Initialised Map
initialise random mine positions;
initialise random mine hunter positions;
for each mine hunter do

get the closest mine to this mine hunter;
assign the closest mine as the mine hunter’s target;

end
while map not solved do

for each mine hunter do
update mine hunter’s sensors;
read output from mine hunters NN;
update mine hunter’s position;
check if mine hunter has reached target;

end
if all targets reached then

map is solved;
end

end
Algorithm 1: Basic operation of JMineHunter.

of mine hunters, which were increased from 4 to 128. The
functions implemented in the C program would later be used
as a base line comparison for the CUDA implementation.

C. Porting JMineHunter to CUDA

Unlike porting the original Java implementation to C,
the implementation for CUDA required a paradigm shift
in thinking. Initialising the mine and mine hunters with
random positions was simple array initialisation and was
not implemented in CUDA.

Assigning a target to each mine hunter: The C implemen-
tation for this task is described in Algorithm 2, which has
complexity of O(n2). CUDA however, allows us to reduce
this significantly (potentially to O(1) complexity) using the
Parallel Reduction Algorithm as described in [13].

for each mine hunter do
make the first mine the target of the current mine
hunter;
for each mine do

if the current mine is closer to the mine hunter
than the target then

make the current mine the target of the
current mine hunter;

end
end

end
Algorithm 2: C implementation of assigning a mine target.

The implementation of the Parallel Reduction algorithm
presented here works as follows. The problem decomposes
into two sub-tasks. Sub-task one is calculating the distance



of each mine from each mine hunter. This is performed
in one kernel call by assigning one thread to calculate the
distance of one mine from one mine hunter. That is a total
of 128∗8192 or 1, 048, 576 threads running simultaneously.
Each mine hunter has an associated array of distances, with
each element storing the distance to each mine.

The second sub-task of the problem is to search for the
smallest distance in each mine hunters array of distances.
Finding a minimum value in a huge array of values such as
this is a classic reduction problem [13]. Fig. 4 illustrates the
reduction algorithm operating on a small array of 8 items.

Figure 4. An illustration of reducing a small array.

Data: Initialised array of N values
Result: Minimum value in the array
create N/2 threads and assign each one to an element
in the first half of the array;
size = N/2;
while size > 0 do

run each thread;
synchronize threads;
size = size/2;

end
Algorithm 3: Using reduction to find the minimum value
in an array of values.

Algorithm 3 depicts the basic reduction algorithm. When
each thread is run it first checks to see if it is in the bottom
half of the array. If it is in the bottom half of the array it
compares the element in the array for which it is responsible
for with the corresponding element in the latter half of the
array. The smallest of the two elements will be stored in
the element that the thread is responsible for. The variable
”size” indicates what constitutes the bottom half of the array.
As size is continually being divided by two the number of
threads that are actually needed is also being divided by
two. However, the same number of threads is run on every
iteration of the loop. Some threads are wasted in this process.
However, because CUDA compliant boards were designed

to create and run threads with little overhead, this is not an
issue for concern.

Updating the mine hunters sensors: Updating the mine
hunter sensors is simply a parallel array update. Our system
has 128 mine hunters with 4 sensors each, giving a total of
512 threads. Each thread is responsible for copying one value
into an array element. This seemingly trivial task produced
some surprising results in Section IV.

Updating the position of the mine hunters: Updating the
mine hunter positions is again simply a parallel array update.
Our system has 128 mine hunters with 2 neurons each,
giving a total of 256 threads. As illustrated in Fig. 5, each
thread is responsible for calculating the output of a single
neuron and copying that value into an array element. Again
some unexpected results were produced as documented in
Section IV.

Figure 5. Each neuron in a neural network is updated by a single thread.

IV. RESULTS

This section illustrates the results of our experiments with
CUDA. Table III describes the series of functions that were
run on the CUDA system. In CUDA terminology these are
kernels i.e. functions run specifically on the CUDA device.

Function Description
A1 Calculating the distance of each Mine from

each MineHunter.
A2 Calculating the closest Mine from all Mine-

Hunters.
A3 Calculating sensor readings for all Mine-

Hunter.
A4 Updating the positions of all MineHunters.

Table III
FUNCTIONS RUN ON CUDA AND ON CPU.

The timing of each function was measured using the
CUDA system. These timings are shown in red on the
diagrams below.



In order to provide a measure of comparison, equivalent
functions were run on the CPU. These CPU functions are
shown in blue in the diagrams below. These functions are
not equivalent to their CUDA counterparts in terms of com-
plexity, as the parallel nature of the CUDA implementations
demands that algorithmic complexity is naturally reduced.

The CPU implementations of these functions are single
threaded, non-parallel functions. However, as one of the
purposes of this paper was to explore how parallelism on
CUDA could enhance performance compared to non-parallel
code we feel that these functions provide an appropriate
baseline for comparison.

A. Calculate the Distances of Mines from Mine Hunters

The first function that was measured was the process
of calculating the distance of each mine from every mine
hunter. As shown in Fig. 6 CUDA vastly outperforms its
CPU counterpart. From Fig. 6 it can also be seen that the
CUDA implementation runs in just 5% of the time used by
its CPU counterpart.

A1
0

5

10

11
.2
2

0.
57

m
ill

is
ec

on
ds

CPU CUDA

Figure 6. Timings for calculating the distance of each Mine from each
Mine Hunter.

B. Calculating the closest Mine to each Mine Hunter

Having calculated the distance of each mine to each mine
hunter it was then possible to run the second function,
calculating the closest mine to each mine hunter.

As shown in Fig. 7 the speed improvement is not as
drastic as the first result, but significant none-the-less, with
an improvement of over 65% for the CUDA implementation.

A more impressive illustration of the timings for calcu-
lating the closest mine to each mine hunter is presented in
Fig. 8, which shows the expected complexity of O(Log n)
decay [14].

A2
0

1

2

3

2.
24

0.
77m
ill

is
ec

on
ds

CPU CUDA

Figure 7. Timings for calculating the closest Mine to each Mine Hunter.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5 · 10−2

0.1

0.15

0.2 0.
19

0.
11

7.
16

· 1
0
−
2

5.
57

· 1
0
−
2

4.
68

· 1
0
−
2

4.
4
· 1
0
−
2

3.
53

· 1
0
−
2

3.
96

· 1
0
−
2

3.
38

· 1
0
−
2

3.
81

· 1
0
−
2

3.
38

· 1
0
−
2

3.
36

· 1
0
−
2

3.
66

· 1
0
−
2

m
ill

is
ec

on
ds

Iterations

Figure 8. Iteration timings for calculating the closest Mine to each Mine
Hunter

C. Calculating sensor readings of all Mine Hunters

The main update loop of our experimental program con-
sisted of two operations, updating the sensor readings of
each mine hunter to be used as input to the mine hunter’s
neural network and updating the positions of the mine
hunters by taking the output from their neural network and
applying it as the direction in which to move the mine hunter.
The results of the former operation are shown in Fig. 9.

These results are disappointing. As can be seen from
Fig. 9, the CPU implementation outperforms the CUDA
implementation by over 70%. This is likely to be the result
of the small data sets involved coupled with an inefficient
block/thread configuration resulting in high cache latency.
However, more investigation is required to confirm this.

D. Updating the positions of all Mine Hunters.

As with the previous results these results are disap-
pointing. The CPU implementation outperforms the CUDA



A3
0

5 · 10−2

0.1

2.
2
· 1
0
−
2

0.
12

m
ill

is
ec

on
ds

CPU CUDA

Figure 9. Timings for calculating sensor readings of all Mine Hunters.

implementation by over 70%.

A4
0

5 · 10−2

0.1

0.15

0.2

5.
7
· 1
0
−
2

0.
21

m
ill

is
ec

on
ds

CPU CUDA

Figure 10. Timings for updating the positions of all MineHunters.

V. CONCLUSIONS

The experimental results presented in this paper show
that CUDA is an excellent choice for rapid conversion of
programs to a parallel architecture. It has a very low learning
curve as experienced in implementing the experimental
program for this paper. However, the results presented in
Fig. 9 and Fig. 10 clearly demonstrate that utilising CUDA
without sufficient knowledge of the underlying principles on
which it is based can have unexpected results.

Our future work will investigate the reasons why CUDA
performed poorly in relation to the CPU solution in the
results presented for updating the positions of all mine
hunters and calculating sensor readings of all mine hunters.

REFERENCES

[1] D. Ly, V. Paprotski, and D. Yen, “Neural networks on gpus:
Restricted boltzmann machines,” Technical Report, Depart-
ment of Electrical and Computer Engineering, University of
Toronto, Tech. Rep., 2008.

[2] A. Guzhva, S. Dolenko, and I. Persiantsev, “Multifold accel-
eration of neural network computations using gpu,” Artificial
Neural Networks–ICANN 2009, pp. 373–380, 2009.

[3] J. Nageswaran, N. Dutt, J. Krichmar, A. Nicolau, and A. Vei-
denbaum, “A configurable simulation environment for the
efficient simulation of large-scale spiking neural networks on
graphics processors,” Neural Networks, vol. 22, no. 5-6, pp.
791–800, 2009.

[4] A. Jahnke, T. Schönauer, U. Roth, K. Mohraz, and H. Klar,
“Simulation of spiking neural networks on different hardware
platforms,” Artificial Neural NetworksICANN’97, pp. 1187–
1192, 1997.

[5] E. Niebur and D. Brettle, “Efficient simulation of biological
neural networks on massively parallel supercomputers with
hypercube architecture,” Advances in Neural Information Pro-
cessing Systems, pp. 904–904, 1994.

[6] H. Plesser, J. Eppler, A. Morrison, M. Diesmann, and
M. Gewaltig, “Efficient parallel simulation of large-scale
neuronal networks on clusters of multiprocessor computers,”
Euro-Par 2007 parallel processing, pp. 672–681, 2007.

[7] X. Jin, S. Furber, and J. Woods, “Efficient modelling of
spiking neural networks on a scalable chip multiprocessor,” in
Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint
Conference on. IEEE, 2008, pp. 2812–2819.

[8] J. Nageswaran, N. Dutt, J. Krichmar, A. Nicolau, and A. Vei-
denbaum, “Efficient simulation of large-scale spiking neural
networks using cuda graphics processors,” in Neural Net-
works, 2009. IJCNN 2009. International Joint Conference on.
IEEE, 2009, pp. 2145–2152.

[9] K. Oh and K. Jung, “Gpu implementation of neural networks,”
Pattern Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[10] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based
face detection,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 20, no. 1, pp. 23–38, 1998.

[11] M. Odom and R. Sharda, “A neural network model for
bankruptcy prediction,” in Neural Networks, 1990., 1990
IJCNN International Joint Conference on. IEEE, 1990, pp.
163–168.

[12] T. Masters, Practical neural network recipes in C++. Mor-
gan Kaufmann, 1993.

[13] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with cuda,” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[14] M. Harris, “Optimizing cuda,” SC07: High Performance
Computing With CUDA, 2007.


